Integer Computer
Arithmetic

Computer Systems Sections 2.2, 2.3

Binghamton CS-220

University Spring 2016

Abstraction

Computer Integers behave like mathematical integers

[nfinite & Ordered (x < x+1)
Associative (x +y) +z=x+ (y + 2)
Distributive x*(y + z) = x*y + x*z
Commutative x+y = y+X, X*y=y*x

Binghamton CS-220

University Spring 2016

Leaky Abstraction

Computer Integers behave like mathematical integers but...
Not infinite & ordered (x < x+1) e.g. (char) 127+1 =-128
Associative (x +y) +z=x+ (y +z)
Distributive x*(y + z) = x*y + x*z
Commutative x+y = y+X, X*y=y*x

Binghamton CS-220

University Spring 2016

Decimal, Binary, and Hexadecimal Bases

0 0b0000 0b1000

1 0b0001 Ox1 9 0b1001 0x9
2 0b0010 0x2 10 0b1010 0xA
3 0b0011 0x3 11 0b1011 0xB
4 0b0100 O0x4 12 0b1100 0xC
5 0b0101 0x5 13 0b1101 0xD
6 0b0110 0x6 14 0b1110 OxE
7 0b0111 0x7 15 Ob1111 OxF

Binghamton CS-220

University Spring 2016

Non-Decimal Bases

d dp, . d d,

#digits
value = 2 d; xb',0<d; <b

(=0

123 =1x104+2x 101+ 3x10°
0b0111 1011 = 2642°4-24423421420 = 644324+16+8+2+1 = 123
0x7B=7x16+11=112+ 11 =123

Binghamton CS-220

University Spring 2016

Notation

* A decimal number will be represented by decimal digits
¢« 327=3x100+2x10+7=3x104+2x10'+7x10°

* A binary number will be prefixed by 0b, followed by 0/1
* 0b0110=1x4+1x2=1x22+1x21=6

* A hexadecimal number will be prefix by 0x, followed by hex digits
* Hex digitsare 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
* 0x01AC =1x256+10x16+12=1x16>+10x16'+12x16°=428

Binghamton CS-220

University Spring 2016

Computer Unsigned Integer Arithmetic

* Represent a number as a vector of bits (binary data)

n—1
value = z B; x 2
i=0
B, B, | | | | B 1B
0 0 0 1 0 1 0 1

0b0001 0101 =0x15=1x2%+1x2°+1x2°=16+44+1=21

Binghamton CS-220

University Spring 2016

How Many Bits in an Integer in C?

DataType _____n___ MaxValue? _

char 81 UCHAR_MAX
short int >16 USHRT_MAX
int >16° UINT_MAX
long int >32 ULONG_MAX
long long int =64 ULLONG_MAX

I Typical value assuming addressable unitis 8 bits. Use “CHAR_BIT” in <limits.h> to get size of character.
Z Constant defined when you “#include <limits.h>"
3 Usually 32

See http://en.wikipedia.org/wiki/C data types

http://en.wikipedia.org/wiki/C_data_types

Binghamton CS-220

University Spring 2016

What happens on unsigned overflow?

* Overflowing bits ignored

(uchar) Oxff + (uchar) Ox01 = O0x100 = (uchar) 0x00
(uchar) 255 + (uchar) 1 =256 = (uchar) O

* See xmp counting/count.c

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_counting/count.c

Binghamton CS-220

University Spring 2016

Unsigned: 8 bits

0x00 O0x01 0x02 Ox7E Ox7F 0x80 0x81 OxFE OxFF

Binary

0000 0000 0000 0001 0000 0010 01111110 01111111 1000 0000 1000 0001 11111110 1111 1111

Unsigned
Value 0 1 2 126 127 128 129 254 255

Binghamton CS-220

University Spring 2016

Computer Representation of Negatives

o)

 Vector of 1’s and 0’s can’t have “-

* Trick : Subtract from N
* Nis bigger than any number you can represent
* If you have nbits for a number, N=2"
* Given x< 0, represent xusing V- | x| or N- (-x)

0 bblblblblblb 11bblblblblblb

0 1 2 20-D-1 201 o] 2n=pN

Positive Numbers Negative Numbers

0,1,2,3,..,20D-2 2(-1)_1 20 20Dy 2,1

Binghamton CS-220

University Spring 2016

Signed Integers

* Represented as “Two’s Complement” Numbers in n bits

» Positive numbers from 1 to 20+ - 1 : waluebits = Y 1=F B; X 2
* Negative numbers from -1 to -20"D : paluebits = 2™ — (X2, B; x 21)
* Negative numbers have a “1” in the high order bit

e -1 is Oxffff...ff
 Shortcut... -x= “Flip the bits and add 1”

x80 xfe xtt x00 x01 x02 x7f
_2(n-1) -2 -1 0 1 2 211

Binghamton CS-220

University Spring 2016

Relationship between bits and value

e For value>= 0
e bits = Y1=4 B; X 2 = value
e For value<0
e bits = 2™ — |value|
e bits = 2" — (—value) —value=73Y1"JB; X 2
e bits = 2" — Y I'B; x 2!
e bits= (2" —1) — (X5y Bix2') +1
e value = 2™ — bits

Binghamton CS-220

University Spring 2016

Two’s Complement : 8 bits N=28 = 256

BITS

80 0x381

1000 0000 10004950

Unsigned
254 255 0 1 2 126 127

256-UVal
-127

Value 00 0x01 0x02 .. O0x7E Ox7F

OxFE OxFF

1111 1110 1111 1111 0000 0000 0000 0001 0000 0010 01111110 01111111

-128 -127 .. -2 -1 0 1 2 126 127

Binghamton CS-220

University Spring 2016

Why does the shortcut work?

2 paluebits = 2" —

Flip the Bits
« 2" — (=bits) =

.ay
- (2"-1) — (

-value

e So, for examft

[-value, ﬂ%

|

+1

Binghamton CS-220

University Spring 2016

What does “Flip the bits” do?

e Same as binary subtraction from a vector of all 1’s

- Vector of all 1's = (Y1 2H)=2" — 1

* So, “flip the bits” is really 2" — 1 — value = 2™ — value — 1

Binghamton CS-220

University Spring 2016

Why does the shortcut work?

Flip the Bits }

» For value >= 0, bits = Y= B; X 2' = value

e —value = 2" — Y B; x 2! =(2" — 1) — bits +1 N J

» For value < 0, bits = 2™ — Y™ B; X 2! where —value = ¥ B; x 2t
e —value = 2" — 2"+ Y B; x 2!

e —value = 2" — (Zn — XiZo Bi X Zi) e 1Eﬂ+ 1 ﬁ 1 J
I

Flip the Bits J

Binghamton

CS-220

University

How Many Bits In an Integer?

_ Min Signed ¢ | Max Signed < | Max Unsigned <

Spring 2016

char

short int
int

long int
long long int

g1
=16
>167
=32
=64

SCHAR_MIN
SHRT_MIN
INT_MIN
LONG_MIN
LLONG_MIN

SCHAR_MAX
SHRT_MAX
INT_MAX
LONG_MAX
LLONG_MAX

UCHAR_MAX
USHRT_MAX

0)
0)
0)

NT_MAX
LONG_MAX

LLONG_MAX

I Typical value assuming addressable unitis 8 bits. Use “CHAR_BIT” in <limits.h> to get size of character.
Z Constant defined when you “#include <limits.h>"

3 Usually 16, often 32

See xmp limits/limits.c
See http://en.wikipedia.org/wiki/C data types

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_limits/limits.c
http://en.wikipedia.org/wiki/C_data_types

Binghamton CS-220

University Spring 2016

What happens on signed overflow?

(char) 127 + (char) 1 =128 = (char) -128

* Overflows into sign bit)
(char) Ox7f + (char) Ox01 = Ox80 = (char) 0x80

» See xmp counting/count.c

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_counting/count.c

Binghamton CS-220

University Spring 2016

Extending Positive Binary Numbers

* How do we make a number wider (more bits)?

* How do we add digits to a positive decimal number?

Binghamton CS-220

University Spring 2016

Extending Negative Binary Numbers

s~ paluebits = 2" — (2?2—01 B; X Zi)

n zZzeroes m zeroes
A

e 2"=10000..000 2m=10000..000..000
- 0010..010 - 0000..010..010

A\

1101..101 1111..101..101

Binghamton CS-220

University Spring 2016

Extending Binary Numbers

* Pad on the left with the sign bit

Binghamton CS-220

University Spring 2016

Truncating Binary Numbers

* Remove left most bits

* If any of the left most bits (including the resulting sign bit) are
different from the sign bit, result is incorrect (OVERFLOW)

* Examples 8 bit to 4 bit...

0b/0000 0011 -> 0b 0011 (3->3)

0b 0010 0011 -> 0b 0011 (35->3) OVFL
0b1111 1001 -> 0b 1001 (-7 -> -7)

0b 1101 1001 -> 0b 1001 (-39 -> -7) OVFL

0b11110111 ->0b 0111 (-9 -> +7) OVFL

Binghamton CS-220

University Spring 2016

Mixing Types (“Casting”)

* How do you mix signed and unsigned numbers?

* How do you mix long / short numbers? D
* Strong Typing - Compiler preventsrniXing/OftYW/S(
int X; unsigned inty; x=y: w)
 Explicit Casting - Programmer tells compiler “treat this unsigned
integer like a signed integer”
int X; unsigned int y; x=(int) y;

* Implicit Casting
int X; unsigned int y; x=y;

Binghamton CS-220

University Spring 2016

General Conversion Strategy

* If “from” size is smaller than “to” size (to precision is greater)
* Pad on left with sign bit for signed data
* Pad on left with 0’s for unsigned data

* If “from” size is greater than “to” size (to precision is less)
* Truncate

* For signed->unsigned or unsigned->signed (same precision)
* Bits stay the same... just interpreted differently.

Binghamton CS-220

University Spring 2016

Casting Examples

= precision

unsigned >precision

<precision

From T T | 0T

uchar 0x01 char 0x01 uint 0x0001

uchar OxFF 255 char OxFF -1 uint 0x00FF 255

char 0x01 1 uchar 0x01 1 uint 0x0001

char OxFF -1 wuchar OxFF 255 uint 0x00FF 255

uint 0xFOF3 61683 uchar 0xF3 243 char 0xF3 -13 int OxFOF3 -3853

int 0x01D2 466 uchar 0xD2 210 char 0xD2 -46 uint 0x01D2 466

Binghamton CS-220

University Spring 2016

Integer Constant Types

* If not specified, integer constants are considered to be signed
integers.

* Make a constant “unsigned” by adding a “U” suffix
unsigned char x = 12U;

Binghamton CS-220

University Spring 2016

Implicit Casting for Integers in C

* In an expression,

* if anything is unsigned, everything is unsigned!
int x=-1; unsigned int y=321;
if (x>y) printf(“l didn’t expect this\n”);

* everything smaller than int is cast to int
char x=100; char y=50; x = (x*y)/500:;

* everything smaller than the largest type is cast to the largest type

* In an assignment or function call,
 the resultis cast to the type of the receiver

* When in doubt, use explicit casts!

Binghamton CS-220

University Spring 2016

Abstraction

[don’t need to worry about mixing types.
C takes care of implicit conversion
and does the right thing.

Binghamton CS-220

University Spring 2016

Leaky Abstraction

One of the most common causes of bugs in code occurs when naive
programmers assume C will do the right thing.

* Single unsigned variable causes all data to get treated as unsigned,
especially in comparisons

* Assumption of floating point division when integer division (with
truncation) is performed

Binghamton CS-220

University Spring 2016

Examples of implicit casting bugs

unsigned int length; int grade;
int xX; int testl,test2; // Scores <= 100
if (x < length) { grade=((testl +test2)/200) * 100;

/* what if x=-1, length=3 */ / /Everybody gets zero!

Binghamton

University

Conversion Error Summary

FROM TYPE

TOTYPE

CS-220
Spring 2016

LEGEND

Extend >=prec.
No errors

Extend >=prec.
Wrong if <0

Truncate <prec
Wrong if too big

Truncate <prec
Wrong if <0 or
too big

32

