
Binghamton

University

CS-220

Spring 2016

Integer Computer
Arithmetic

Computer Systems Sections 2.2, 2.3

Binghamton

University

CS-220

Spring 2016

Abstraction

Computer Integers behave like mathematical integers

Infinite & Ordered (x < x+1)

Associative (x + y) + z = x + (y + z)

Distributive x*(y + z) = x*y + x*z

Commutative x+y = y+x, x*y=y*x

Binghamton

University

CS-220

Spring 2016

Leaky Abstraction

Computer Integers behave like mathematical integers but…

Not infinite & ordered (x < x+1) e.g. (char) 127+1 = -128

Associative (x + y) + z = x + (y + z)

Distributive x*(y + z) = x*y + x*z

Commutative x+y = y+x, x*y=y*x

Binghamton

University

CS-220

Spring 2016

Decimal, Binary, and Hexadecimal Bases

Dec Bin Hex Dec Bin Hex

0 0b0000 0x0 8 0b1000 0x8

1 0b0001 0x1 9 0b1001 0x9

2 0b0010 0x2 10 0b1010 0xA

3 0b0011 0x3 11 0b1011 0xB

4 0b0100 0x4 12 0b1100 0xC

5 0b0101 0x5 13 0b1101 0xD

6 0b0110 0x6 14 0b1110 0xE

7 0b0111 0x7 15 0b1111 0xF

Binghamton

University

CS-220

Spring 2016

Non-Decimal Bases

𝑣𝑎𝑙𝑢𝑒 = ෍

𝑖=0

#𝑑𝑖𝑔𝑖𝑡𝑠

𝑑𝑖 × 𝑏𝑖 , 0 ≤ 𝑑𝑖 < 𝑏

123 = 1 x 102 + 2 x 101 + 3 x 100

0b0111 1011 = 26+25+24+23+21+20 = 64+32+16+8+2+1 = 123

0x7B = 7x16 + 11 = 112 + 11 = 123

dn dn-1 ... d1 d0

Binghamton

University

CS-220

Spring 2016

Notation

• A decimal number will be represented by decimal digits
• 327 = 3 x 100 + 2 x 10 + 7 = 3 x 102 + 2 x 101 + 7 x 100

• A binary number will be prefixed by 0b, followed by 0/1
• 0b0110 = 1 x 4 + 1 x 2 = 1 x 22 + 1 x 21 = 6

• A hexadecimal number will be prefix by 0x, followed by hex digits
• Hex digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• 0x01AC = 1 x 256 + 10 x 16 + 12 = 1 x 162 + 10 x 161 + 12 x 160 = 428

Binghamton

University

CS-220

Spring 2016

Computer Unsigned Integer Arithmetic

• Represent a number as a vector of bits (binary data)

𝑣𝑎𝑙𝑢𝑒 = ෍

𝑖=0

𝑛−1

𝐵𝑖 × 2𝑖

Bn-1 Bn-2 B1 B0

0 0 0 1 0 1 0 1

0b0001 0101 = 0x15 = 1 x 24 + 1 x 22+ 1 x 20 = 16 + 4 + 1 = 21

Binghamton

University

CS-220

Spring 2016

How Many Bits in an Integer in C?
Data Type n Max Value 2

char 81 UCHAR_MAX

short int ≥16 USHRT_MAX

int ≥16 3 UINT_MAX

long int ≥32 ULONG_MAX

long long int ≥64 ULLONG_MAX
1 Typical value assuming addressable unit is 8 bits. Use “CHAR_BIT” in <limits.h> to get size of character.
2 Constant defined when you “#include <limits.h>”
3 Usually 32

See http://en.wikipedia.org/wiki/C_data_types

http://en.wikipedia.org/wiki/C_data_types

Binghamton

University

CS-220

Spring 2016

What happens on unsigned overflow?

• Overflowing bits ignored

(uchar) 0xff + (uchar) 0x01 = 0x100 = (uchar) 0x00

(uchar) 255 + (uchar) 1 = 256 = (uchar) 0

• See xmp_counting/count.c

0 2n-11 2

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_counting/count.c

Binghamton

University

CS-220

Spring 2016

Unsigned: 8 bits

Hex
0x00 0x01 0x02 … 0x7E 0x7F 0x80 0x81 … 0xFE 0xFF

Binary
0000 0000 0000 0001 0000 0010 0111 1110 0111 1111 1000 0000 1000 0001 1111 1110 1111 1111

Unsigned
Value 0 1 2 … 126 127 128 129 … 254 255

Binghamton

University

CS-220

Spring 2016

Computer Representation of Negatives

• Vector of 1’s and 0’s can’t have “-”

• Trick : Subtract from N
• N is bigger than any number you can represent

• If you have n bits for a number, N=2n

• Given x < 0, represent x using N - |x| or N – (-x)

0 2n-11 2 2(n-1)-1 2(n-1) 2n = N

Positive Numbers
0,1,2,3,…,2(n-1)-2,2(n-1)-1

Negative Numbers
-2(n-1),-2(n-1)+1, … ,-2,-1

0 b b b b b b b 1 b b b b b b b

BITS

Binghamton

University

CS-220

Spring 2016

Signed Integers
• Represented as “Two’s Complement” Numbers in n bits

• Positive numbers from 1 to 2(n-1) – 1 : 𝑣𝑎𝑙𝑢𝑒𝑏𝑖𝑡𝑠 = σ𝑖=0
𝑛−2 𝐵𝑖 × 2𝑖

• Negative numbers from -1 to -2(n-1) : 𝑣𝑎𝑙𝑢𝑒𝑏𝑖𝑡𝑠 = 2𝑛 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖

• Negative numbers have a “1” in the high order bit

• -1 is 0xffff...ff

• Shortcut… -x = “Flip the bits and add 1”

0 2(n-1)-11 2-2 -1-2(n-1)

x00 x01 x02xfe xff x7fx80

Binghamton

University

CS-220

Spring 2016

Relationship between bits and value

• For value >= 0
• 𝑏𝑖𝑡𝑠 = σ𝑖=0

𝑛−1 𝐵𝑖 × 2𝑖 = 𝑣𝑎𝑙𝑢𝑒

• For value<0
• 𝑏𝑖𝑡𝑠 = 2𝑛 − 𝑣𝑎𝑙𝑢𝑒

• 𝑏𝑖𝑡𝑠 = 2𝑛 − −𝑣𝑎𝑙𝑢𝑒 − 𝑣𝑎𝑙𝑢𝑒 = σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖

• 𝑏𝑖𝑡𝑠 = 2𝑛 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖

• 𝑏𝑖𝑡𝑠 = 2𝑛 − 1 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖 + 1

• 𝑣𝑎𝑙𝑢𝑒 = 2𝑛 − 𝑏𝑖𝑡𝑠

Binghamton

University

CS-220

Spring 2016

Two’s Complement : 8 bits N=28 = 256

Hex
0x80 0x81 … 0xFE

Value
0xFF

0x00 0x01 0x02 … 0x7E 0x7F

Binary
1000 0000 1000 0001 1111 1110 1111 1111 0000 0000 0000 0001 0000 0010 0111 1110 0111 1111

Unsigned
Value 128 129 … 254 255 0 1 2 … 126 127

256-UVal
-128 -127 … -2 -1

Signed
Value -128 -127 … -2 -1 0 1 2 … 126 127

BITSBITS ValueValue

Binghamton

University

CS-220

Spring 2016

Why does the shortcut work?

• 𝑣𝑎𝑙𝑢𝑒𝑏𝑖𝑡𝑠 = 2𝑛 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖 (Assuming -)

• 2𝑛 − −𝑏𝑖𝑡𝑠 = σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖

• (2𝑛−1) − −𝑣𝑎𝑙𝑢𝑒 + 1 = σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖

• So, for example, for signed char (8 bits) value of -3…
1 1 1 1 1 1 1 1

- 0 0 0 0 0 0 1 1

1 1 1 1 1 1 0 0

+ 0 0 0 0 0 0 0 1

1 1 1 1 1 1 0 1

Flip the Bits

2n-1

-value

-value, flipped +1

Binghamton

University

CS-220

Spring 2016

What does “Flip the bits” do?

• Same as binary subtraction from a vector of all 1’s

• Vector of all 1’s = σ𝑖=0
𝑛−1 2𝑖 =2𝑛 − 1

• So, “flip the bits” is really 2𝑛 − 1 − 𝑣𝑎𝑙𝑢𝑒 = 2𝑛 − 𝑣𝑎𝑙𝑢𝑒 − 1

1 1 1 1 1 1 1 1

- 0 0 1 0 0 0 1 1

1 1 0 1 1 1 0 0

Binghamton

University

CS-220

Spring 2016

Why does the shortcut work?

• For value >= 0, 𝑏𝑖𝑡𝑠 = σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖 = 𝑣𝑎𝑙𝑢𝑒

• −𝑣𝑎𝑙𝑢𝑒 = 2𝑛 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖 = 2𝑛 − 1 − 𝑏𝑖𝑡𝑠 + 1

• For value < 0, 𝑏𝑖𝑡𝑠 = 2𝑛 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖 where −𝑣𝑎𝑙𝑢𝑒 = σ𝑖=0

𝑛−1 𝐵𝑖 × 2𝑖

• −𝑣𝑎𝑙𝑢𝑒 = 2𝑛 − 2𝑛 + σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖

• −𝑣𝑎𝑙𝑢𝑒 = 2𝑛 − 2𝑛 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖 = 2𝑛 − 1 − 𝑏𝑖𝑡𝑠 + 1

Flip the Bits

+1

Flip the Bits

+1

Binghamton

University

CS-220

Spring 2016

How Many Bits in an Integer?
Data Type n Min Signed 2 Max Signed 2 Max Unsigned 2

char 81 SCHAR_MIN SCHAR_MAX UCHAR_MAX

short int ≥16 SHRT_MIN SHRT_MAX USHRT_MAX

int ≥163 INT_MIN INT_MAX UINT_MAX

long int ≥32 LONG_MIN LONG_MAX ULONG_MAX

long long int ≥64 LLONG_MIN LLONG_MAX ULLONG_MAX

1 Typical value assuming addressable unit is 8 bits. Use “CHAR_BIT” in <limits.h> to get size of character.
2 Constant defined when you “#include <limits.h>”
3 Usually 16, often 32

See xmp_limits/limits.c
See http://en.wikipedia.org/wiki/C_data_types

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_limits/limits.c
http://en.wikipedia.org/wiki/C_data_types

Binghamton

University

CS-220

Spring 2016

What happens on signed overflow?

• Overflows into sign bit

(char) 0x7f + (char) 0x01 = 0x80 = (char) 0x80

(char) 127 + (char) 1 = 128 = (char) -128

• See xmp_counting/count.c

0 2(n-1)-11 2-2 -1-2(n-1)

BITS

Value

http://www.cs.binghamton.edu/~tbartens/CS220_Spring_2016/examples/xmp_counting/count.c

Binghamton

University

CS-220

Spring 2016

Extending Positive Binary Numbers

• How do we make a number wider (more bits)?

• How do we add digits to a positive decimal number?

• 0023 (4 digits) -> ???????? (8 digits)

• 0b0101 (4 bits) -> 0b???? ???? (8 bits)

Binghamton

University

CS-220

Spring 2016

Extending Negative Binary Numbers

• 𝑣𝑎𝑙𝑢𝑒𝑏𝑖𝑡𝑠 = 2𝑛 − σ𝑖=0
𝑛−1 𝐵𝑖 × 2𝑖

• 2n = 1 0 0 0 0 … 0 0 0 2m = 1 0 0 0 0 … 0 0 0 … 0 0 0
- 0 0 1 0 … 0 1 0 - 0 0 0 0 … 0 1 0 … 0 1 0

1 1 0 1 … 1 0 1 1 1 1 1 … 1 0 1 … 1 0 1

n zeroes m zeroes

Binghamton

University

CS-220

Spring 2016

Extending Binary Numbers

• Pad on the left with the sign bit

Binghamton

University

CS-220

Spring 2016

Truncating Binary Numbers

• Remove left most bits

• If any of the left most bits (including the resulting sign bit) are
different from the sign bit, result is incorrect (OVERFLOW)

• Examples 8 bit to 4 bit…

0b 0000 0011 -> 0b 0011 (3->3)

0b 0010 0011 -> 0b 0011 (35->3) OVFL

0b 1111 1001 -> 0b 1001 (-7 -> -7)

0b 1101 1001 -> 0b 1001 (-39 -> -7) OVFL

0b 1111 0111 -> 0b 0111 (-9 -> +7) OVFL

Binghamton

University

CS-220

Spring 2016

Mixing Types (“Casting”)

• How do you mix signed and unsigned numbers?

• How do you mix long / short numbers?

• Strong Typing – Compiler prevents mixing of types
int x; unsigned int y; x=y;

• Explicit Casting – Programmer tells compiler “treat this unsigned
integer like a signed integer”

int x; unsigned int y; x=(int) y;

• Implicit Casting
int x; unsigned int y; x=y;

Error: Cannot assign
unsigned int to int

Binghamton

University

CS-220

Spring 2016

General Conversion Strategy

• If “from” size is smaller than “to” size (to precision is greater)
• Pad on left with sign bit for signed data

• Pad on left with 0’s for unsigned data

• If “from” size is greater than “to” size (to precision is less)
• Truncate

• For signed->unsigned or unsigned->signed (same precision)
• Bits stay the same… just interpreted differently.

Binghamton

University

CS-220

Spring 2016

Casting Examples

From To To To

Type Bits Value Type Bits Value Type Bits Value Type Bits Value

uchar 0x01 1 char 0x01 1 uint 0x0001 1 int 0x0001 1

uchar 0xFF 255 char 0xFF -1 uint 0x00FF 255 int 0xFFFF -1

char 0x01 1 uchar 0x01 1 uint 0x0001 1 int 0x0001 1

char 0xFF -1 uchar 0xFF 255 uint 0x00FF 255 int 0xFFFF -1

uint 0xF0F3 61683 uchar 0xF3 243 char 0xF3 -13 int 0xF0F3 -3853

int 0x01D2 466 uchar 0xD2 210 char 0xD2 -46 uint 0x01D2 466

Legend

= precision

unsigned >precision

signed >precision

<precision

Binghamton

University

CS-220

Spring 2016

Integer Constant Types

• If not specified, integer constants are considered to be signed
integers.

• Make a constant “unsigned” by adding a “U” suffix
unsigned char x = 12U;

Binghamton

University

CS-220

Spring 2016

Implicit Casting for Integers in C
• In an expression,

• if anything is unsigned, everything is unsigned!
int x=-1; unsigned int y=321;
if (x>y) printf(“I didn’t expect this\n”);

• everything smaller than int is cast to int
char x=100; char y=50; x = (x*y)/500;

• everything smaller than the largest type is cast to the largest type

• In an assignment or function call,
• the result is cast to the type of the receiver

• When in doubt, use explicit casts!

Binghamton

University

CS-220

Spring 2016

Abstraction

I don’t need to worry about mixing types.

C takes care of implicit conversion

and does the right thing.

Binghamton

University

CS-220

Spring 2016

Leaky Abstraction

One of the most common causes of bugs in code occurs when naïve
programmers assume C will do the right thing.

• Single unsigned variable causes all data to get treated as unsigned,
especially in comparisons

• Assumption of floating point division when integer division (with
truncation) is performed

Binghamton

University

CS-220

Spring 2016

Examples of implicit casting bugs

unsigned int length;

int x;

if (x < length) {

/* what if x=-1, length=3 */

…

}

int grade;

int test1,test2; // Scores <= 100

grade=((test1+test2)/200) * 100;

//Everybody gets zero!

Binghamton

University

CS-220

Spring 2016

Conversion Error Summary

TO TYPE

char uchar short ushort int uint long ulong

F
R

O
M

 T
Y

P
E

char

uchar

short

ushort

int

uint

long

ulong

32

LEGEND

Extend >=prec.
No errors

Extend >=prec.
Wrong if <0

Truncate <prec
Wrong if too big

Truncate <prec
Wrong if <0 or
too big

